
 YOUR FIRST ABAP PROGRAM

UNIT – II

Dr.A.DEVI

 Associate Professor

Department of Computer Applications

DRSNSRCAS

 YOUR FIRST ABAP PROGRAM

Creating a Program
To begin creating a program, access the ABAP Editor either via transaction code

SE38, or by navigating the SAP menu tree to Tools ABAP Workbench

Development, in which the ABAP Editor is found. Double-click to execute.

A note to begin: it is advisable to keep the programs created as simple as possible.

Do not make them any more complicated than is necessary. This way, when a

program is passed on to another developer to work with, fix bugs and so on, it will

be far easier for them to understand. Add as many comments as possible to the

code, to make it simpler for anyone who comes to it later to understand what a

program is doing, and the flow of the logic as it is executed.

The program name must adhere to the customer naming conventions, meaning

that here it must begin with the letter Z. In continuation of the example from the

previous chapter, in this instance the program will be titled ‘Z_Employee_List_01’,

which should be typed into the ‘Program’ field on the initial screen of the ABAP

Editor. Ensure that the ‘Source code’ button is checked, and then click ‘Create’:

 YOUR FIRST ABAP PROGRAM

A ‘Program Attributes’ window will then appear. In the ‘Title’ box, type a

description of what the program will do. In this example, “My Employee List

Report”. The Original language should be set to EN, English by default, just check

this, as it can have an effect on the text entries displayed within certain programs.

Any text entries created within the program are language-specific, and can be

maintained for each country using a translation tool. This will not be examined at

length here, but is something to bear in mind.

In the ‘Attributes’ section of the window, for the ‘Type’, click the drop-down menu

and select ‘Executable program’, meaning that the program can be executed

without the use of a transaction code, and also that it can be run as a background

job. The ‘Status’ selected should be ‘Test program’, and the ‘Application’ should be

‘Basis’. These two options help to manage the program within the SAP system

itself, describing what the program will be used for, and also the program

development status.

For now, the other fields below these should be left empty. Particularly ensure that

the ‘Editor Lock’ box is left clear (selection of this will prevent the program from

being edited). ‘Unicode checks active’ should be selected, as should ‘Fixed point

arithmetic’ (without this, any packed-decimal fields in the program will be

 YOUR FIRST ABAP PROGRAM

rounded to whole numbers). Leave the ‘Start using variant’ box blank. Then, click

the Save button.

 YOUR FIRST ABAP PROGRAM

The familiar ‘Create Object Directory Entry’ box from the previous section should

appear now, click the ‘Local object’ option as before to assign the program to the

temporary development class. Once this is achieved, the coding screen is reached.

Code Editor
Here, focus will be put on the coding area. The first set of lines visible here are

comment lines. These seven lines can be used to begin commenting the program. In

ABAP, comments can appear in two ways. Firstly, if a * is placed at the beginning

of a line, it turns everything to its right into a comment.

 YOUR FIRST ABAP PROGRAM

Note that the * must be in the first column on the left. If it appears in the second

column or beyond, the text will cease to be a comment.

A comment can also be written within a line itself, by using a “. Where this is used,

everything to the right again becomes a comment. This means that it is possible to

add comments to each line of a program, or at least a few lines of comments for

each section.

The next line of code, visible above, begins with the word REPORT. This is called a

STATEMENT, and the REPORT statement will always be the first line of any

executable program created. The statement is followed by the program name

which was created previously. The line is then terminated with a full stop (visible

to the left of the comment).

Every statement in ABAP must be followed by a full stop, or period. This allows

the statement to take up as many lines in the editor as it needs, so for example, the

REPORT statement here could look like this:

 YOUR FIRST ABAP PROGRAM

As long as the period appears at the end of the statement, no problems will arise. It

is this period which marks where the statement finishes.

If you require help with a statement, place the cursor within the statement and choose

the ‘Help on...’ button in the top toolbar:

A window will appear with the ABAP keyword automatically filled in. Click the

continue button and the system will display help on that particular statement,

giving an explanation of what it is used for and the syntax. This can be used for

every ABAP statement within an SAP system. Alternatively, this can be achieved

by clicking the cursor within the statement, and pressing the F1 key:

 YOUR FIRST ABAP PROGRAM

A further tip in this vein is to use the ‘ABAP Documentation and Examples’ page,

which can be accessed by entering transaction code ABAPDOCU into the

transaction code field. The menu tree to the left hand side on this screen allows you

to view example code, which one’s own code can later be based upon. This can

either be copied and pasted into the ABAP editor, or experimented with inside the

screen itself using the Execute button to run the example code:

 YOUR FIRST ABAP PROGRAM

Returning to the ABAP editor now, the first line of code will be written. On the line

below the REPORT statement, type the statement: write ‘HELLO SAP WORLD’.

The write statement will, as you might expect, write whatever is in quotes after it

to the output window (there are a number of additions which can be made to the

write statement to help format the text, which we will return in a later chapter).

Save the program, and check the syntax with the ‘Check’ button in the toolbar (or via CTRL

+ F2). The status bar should display a message reading “Program

Z_EMPLOYEE_LIST_01 is syntactically correct”. Then, click the ‘Activate’ button,

which should add the word ‘Active’ next to the program name. Once this is done,

click the ‘Direct processing’ button to test the code:

 YOUR FIRST ABAP PROGRAM

The report title and the text output should appear like this, completing the program:

Write Statements
Now that the first program has been created, it can be expanded with the addition

of further ABAP statements. Use the Back button to return from the test screen to

the ABAP editor.

Here, the tables which were created in the ABAP Dictionary during the first stage

will be accessed. The first step toward doing this is to include a table’s statement in

the program, which will be placed below the REPORT statement. Following this,

the table name which

 YOUR FIRST ABAP PROGRAM

was created is typed in, z_employee_list_01, and, as always, a period to end the

statement:

While not essential, to keep the format of the code uniform, the Pretty Printer

facility can be used. Click the ‘Pretty Printer’ button in the toolbar to automatically

alter the text in line with the Pretty Printer settings (which can be accessed through

the Utilities menu, Settings, and the Pretty Printer tab in the ABAP Editor section):

Once these settings have been applied, the code will look slightly tidier, like this:

 YOUR FIRST ABAP PROGRAM

Let us now return to the TABLES statement. When the program is executed, the

TABLES statement will create a table structure in memory based on the structure

previously defined in the ABAP Dictionary. This table structure will include all of

the fields previously created, allowing the records from the table to be read and

stored in a temporary structure for the program to use.

To retrieve from our data dictionary table and place them into the table structure,

the SELECT statement will be used.

Type SELECT * from z_employee_list_01. This is telling the system to select

everything (the * refers to all-fields) from the table. Because the SELECT statement

is a loop, the system must be told where the loop ends. This is done by typing the

statement ENDSELECT. Now we have created a select loop let’s do something

with the data we have are looping through. Here, the WRITE command will be

used again. Replace the “write ‘HELLO SAP WORLD’.” line with “write

z_employee_list_01.” to write every row of the table to the output window:

Check the code with the ‘Check’ button, and it will state that there is a syntax error:

 YOUR FIRST ABAP PROGRAM

The cursor will have moved to the TABLES statement which was identified, along

with the above warning. The name “Z_EMPLOYEE_LIST_01” appears to be

incorrect. To check this, open a new session via the New Session button in the

toolbar . Execute the ABAP Dictionary with transaction code SE11, search for Z*

in the ‘Database table’ box and it will bring back the table ZEMPLOYEES, meaning

that the initial table name Z_EMPLOYEE_LIST_01 was wrong. Close the new

session and the syntax error window and type in the correct table name

‘ZEMPLOYEES’ after the TABLES state. Your screen should look like this:

Save the program and check the code, ensuring the syntax error has been removed,

and then click the Test button (F8) and the output window should display every

row of the table:

 YOUR FIRST ABAP PROGRAM

Look at the data in the output window. The system has automatically put each line

from the table on a new row. The WRITE statement in the program did not know

that each row was to be output on a new line; this was forced by some of the

default settings within the system regarding screen settings, making the line length

correspond to the width of the screen. If you try to print the report, it could be that

there are too many columns or characters to fit on a standard sheet of A4. With this

in mind, it is advisable to use an addition to the REPORT statement regarding the

width of each line.

Return to the program, click the REPORT statement and press the F1 key and

observe the LINE SIZE addition which can be included:

In this example, add the LINE-SIZE addition to the REPORT statement. Here, the

line will be limited to 40 characters. Having done this, see what difference it has

made to the output window. The lines have now been broken at the 40 character

 YOUR FIRST ABAP PROGRAM

limit, truncating the output

 YOUR FIRST ABAP PROGRAM

of each line:

Bear these limits in mind so as to avoid automatic truncation when printing

reports. For a standard sheet of A4 this limit will usually be 132 characters. When

the limit is set to this for the example table here, the full table returns, but the line

beneath the title ‘My Employee List Report’ displays the point at which the output is

limited:

Next, the program will be enhanced somewhat, by adding specific formatting

additions to the WRITE statement. First, a line break will be inserted at the

beginning of every row that is output.

 YOUR FIRST ABAP PROGRAM

Duplicate the previous SELECT – ENDSELECT statement block of code and place a

‘/’ after the WRITE statement. This will trigger a line break:

Save and execute the code. The output window should now look like this:

The first SELECT loop has created the first five rows, and the second has output

the next five.

Both look identical. This is due to the LINE-SIZE limit in the REPORT statement,

causing the first five rows to create a new line once they reached 132 characters. If

the LINE-SIZE is increased to, for example 532, the effects of the different WRITE

statements will be visible:

 YOUR FIRST ABAP PROGRAM

The first five rows, because they do not have a line break in the WRITE statement,

have appeared on the first line up until the point at which the 532 character limit

was reached and a new line was forced. The first four records were output on the

first line. The 5th record appears on a line of its own followed by the second set of

five records, having had a line break forced before each record was output.

Return the LINE-SIZE to 132, before some more formatting is done to show the

separation between the two different SELECT loops.

Above the second SELECT loop, type ULINE. This means underline.

Click the ULINE statement and press F1 for further explanation from the

Documentation window, which will state “Writes a continuous underline in a new

line.” Doing this will help separate the two different SELECT outputs in the code

created. Execute this, and it should look like so:

Duplicate the previous SELECT – ENDSELECT statement block of code again, including the

 YOUR FIRST ABAP PROGRAM

ULINE, to create a third SELECT output. In this third section, remove the line

break from the WRITE statement and, on the line below, type “WRITE /.” This will

mean that a new line will be output at the end of the previous line. Execute this to

see the difference in the third section:

Now, create another SELECT loop by duplicating the second SELECT loop. This

time the WRITE statement will be left intact, but a new statement will be added

before the SELECT loop: SKIP, which means to skip a line. This can have a number

added to it to specify how many lines to skip, in this case 2. If you press F1 to

access the documentation window it will explain further, including the ability to

skip to a specific line. The code for this section should look like the first image, and

when executed, the second:

 YOUR FIRST ABAP PROGRAM

Our program should now look as shown below. Comments have been added to

help differentiate the examples.

Output Individual Fields

Create another SELECT statement. This time, instead of outputting entire rows of

the table, individual fields will be output. This is done by specifying the individual

field after the WRITE statement. On a new line after the SELECT statement add the

following line WRITE / zemployees-surname. Repeat this in the same SELECT loop

for fields Forename and DOB. Then execute the code:

 YOUR FIRST ABAP PROGRAM

To tidy this up a little remove the / from the last 2 WRITE statements which will

make all 3 fields appear on 1 line.

Chaining Statements Together
We have used the WRITE statement quite a lot up to now and you will see it

appear on a regular basis in many standard SAP programs. To save time, the

WRITE statements can be

 YOUR FIRST ABAP PROGRAM

chained together, avoiding the need to duplicate the WRITE statement on every line.

To do this, duplicate the previous SELECT loop block of code. After the first

WRITE statement, add “:” This tells the SAP system that this WRITE statement is

going to write multiple fields (or text literals). After the “zemployees-surname”

field change the period (.) to a comma (,) and remove the second and third WRITE

statements. Change the second period (.) to comma (,) also but leave the last period

(.) as is to indicate the end of the statement. This is how we chain statements

together and can also be used for a number of other statements too.

Execute the code, and the output should appear exactly the same as before.

Copy Your Program
Let’s now switch focus a little and look at creating fields within the program. There

are two types of field to look at here, Variables and Constants.

Firstly, it will be necessary to generate a new program from the ABAP Editor. This

can be done either with the steps from the previous section, or by copying a past

program. The latter option is useful if you plan on reusing much of your previous

code. To do this, launch transaction SE38 again and enter the original program’s

name into the ‘Program’ field of the ‘Initial’ screen, and then click the Copy button

(CTRL + F5):

 YOUR FIRST ABAP PROGRAM

A window will appear asking for a name for the new program, in this instance,

enter Z_EMPLOYEE_LIST_2 in the ‘Target Program’ input box, then press the

Copy button. The next screen will ask if any other objects are to be copied. Since

none of the objects here have been created in the first program, leave these blank,

and click Copy. The ‘Create Object Directory Entry’ screen will then reappear and,

as before you should assign the entry to ‘Local object’. The status bar will confirm

the success of the copy:

The new program name will then appear in the ‘Program’ text box of the ABAP Editor

Initial screen. Now click the Change button to enter the coding screen.

The copy function will have retained the previous report name in the comment

space at the top of your program and in the initial REPORT statement, so it is

important to remember to update these. Also, delete the LINE-SIZE limit, so that

this does not get in the way of testing the program.

 YOUR FIRST ABAP PROGRAM

Because there are a number of SELECT and WRITE statements in the program, it is

worth looking at how to use the fast comment facility. This allows code to be, in

practical terms, removed from the program without deleting it, making it into

comments, usually by inserting an asterisk (*) at the beginning of each line. To do

this quickly, highlight the lines to be made into comment and hold down CTRL +

<. This will automatically comment the lines selected. Alternatively, the text can he

highlighted and then in the ‘Utilities’ menu, select ‘Block/Buffer’ and then ‘Insert

Comment *’. The selected code is now converted to comment:

Delete most of the code from the program now, retaining one section to continue

working with.

Declaring Variables
A field is a temporary area of memory which can be given a name and referenced

within programs. Fields may be used within a program to hold calculation results,

to help control the logic flow and, because they are temporary areas of storage

(usually held in the RAM), can be accessed very fast, helping to speed up the

program’s execution. There are, of course, many other uses for fields.

 YOUR FIRST ABAP PROGRAM

The next question to examine is that of variables, and how to declare them in a

program. A variable is a field, the values of which change during the program

execution, hence of course the term variable.

There are some rules to be followed when dealing with variables:

They must begin with a letter.

Can be a maximum size of 30

characters, Cannot include + , : or ()

in the name, Cannot use a reserved

word.

When creating variables, it is useful to ensure the name given is meaningful.

Naming variables things like A1, A2, A3 and so on is only likely to cause confusion

when others come to work with the program. Names like, in the example here,

‘Surname’, ‘Forename’, ‘DOB’ are much better, as from the name it can be

ascertained exactly what the field represents.

Variables are declared using the DATA statement. The first variable to be declared

here will be an integer field. Below the section of code remaining in your program,

type the statement DATA followed by a name for the field - integer01. Then, the

data type must be declared using the word TYPE and for integers this is referred to

by the letter i. Terminate the statement with a period.

Try another, this time named packed_decimal01, the data type for which is p. A

packed decimal field is there to help store numbers with decimal places. It is

possible to specify the number of decimal places you want to store. After the ‘p’,

type the word decimals and then the number desired, in this instance, 2 (packed

decimal can store up to 14 decimal places). Type all of this, then save the program:

 YOUR FIRST ABAP PROGRAM

These data types used are called elementary. These types of variables have a fixed

length in ABAP, so it is not necessary to declare how long the variables need to be.

There is another way of declaring variables, via the LIKE addition to the DATA

statement. Declare another variable, this time with the name packed_decimal02

but, rather than using the TYPE addition to define the field type, use the word

LIKE, followed by the previous variable’s name “packed_decimal01”. This way,

you can ensure subsequent variables take on exactly the same properties as a

previously created one. Copy and paste this several times to create

packed_decimal03 and 04.

If you are creating a large number of variables of the same data type, by using the

LIKE addition, a lot of time can be saved. If, for example, the DECIMALS part were

to need to change to 3, it would then only be necessary to change the number of

decimals on the original variable, not all of them individually:

Additionally, the LIKE addition does not only have to refer to variables, or fields,

within the program. It can also refer to fields that exist in tables within the SAP

system. In the table we created there was a field named ‘Surname’. Create a new

variable called new_surname using the DATA statement. When defining the data

type use the LIKE addition followed by zemployees-surname. Defining fields this

way saves you from having to remember the exact data type form every field you

have to create in the SAP system.

Check this for syntax errors to make sure everything is correct. If there are no

errors remove the new_surname, packed_decimal02, 03 and 04 fields as they are no

longer needed.

With another addition which can be made to the DATA statement, one can declare

initial values for the variables defined in the program. For the “integer01” variable,

 YOUR FIRST ABAP PROGRAM

after “TYPE i”, add the following addition: VALUE 22. This will automatically

assign a value of 22 to

 YOUR FIRST ABAP PROGRAM

“integer01” when the program starts.

For packed decimal fields the process is slightly different. The VALUE here must

be specified within single quotation marks, ‘5.5’ as without these, the ABAP

statement would be terminated by the period in the decimal. Note that one is not

just limited to positive numbers. If you want to declare a value of a negative

number, this is entirely possible:

Constants
A constant is a variable whose associated value cannot be altered by the program

during its execution, hence the name. Constants are declared with the

CONSTANTS statement (where the DATA statement appeared for variables).

When writing code then, the constant can only ever be referred to; its value can

never change. If you do try to change a Constant’s value within the program, this

will usually result in a runtime error.

The syntax for declaring constants is very similar to that of declaring variables,

though there are a few differences. You start with the statement CONSTANTS.

Use the name myconstant01 for this example. Give it a type p as before with 1

decimal place and a value of ‘6.6’. Copy and paste and try another with the name

myconstant02, this time a standard integer (type ‘i’) with a value of 6:

(A note: one cannot define constants for data types XSTRINGS, references, internal tables

or structures containing internal tables.)

 ARITHMETIC

Arithmetic – Addition
Now that the ability to create variables has been established, these can be used for

calculations within a program. This chapter will begin by looking at some of the

simple arithmetical calculations within ABAP.

Our program will be tidied up by removing the two constants which were just

created. If a program needs to add two numbers together and each number is

stored as its own unique variable, the product of the two numbers can be stored in

a brand new variable titled “result”.

Create a new DATA statement, name this “result” and use the LIKE statement to give it the

same properties as packed_decimal01, terminating the line with a period.

To add two numbers together, on a new line, type “result = integer01 +

packed_decimal01.” On a new line enter, “WRITE result.” Activate and test the

program, and the result will appear in the output screen:

 ARITHMETIC

Things to remember: For any arithmetical operation, the calculation itself must

appear to the right of the =, and the variable to hold the result to the left. This

ensures that only the result variable will be updated in the execution. If the

variable titled “result” had been assigned a value prior to the calculation, this

would be overwritten with the new value. Spaces must always be inserted on

either side of the = and + signs. This applies to all arithmetical operators, including

parentheses (), which will start to be used as the calculations become more

complicated. Note that one space is the minimum, and multiple spaces can be

used, which may help in lining code up to make it more readable, and indeed

where calculations may be defined over many lines of code.

It is not just the products of variables which can be calculated in calculations, but

also individual literal values, or a mixture of the two, as shown here:

Arithmetic – Subtraction
To subtract numbers, the same method is used, replacing the + with a -. Copy and

paste the previous calculation and make this change. Also, to make this simpler to

understand, change the value of packed_decimal01 from -5.5 to 5.5. One can see by

doing this the way that changing the initial variable will alter the calculation.

Execute the code:

 ARITHMETIC

Arithmetic – Division
To divide numbers, the same method is followed, but the arithmetical operator this

time will be a /

Arithmetic – Multiplication
To multiply, the operator is a *

Additionally to these methods, the statements ADD, SUBTRACT, DIVIDE and

MULTIPLY can be used. The syntax for these is slightly different. Beneath the first

calculation (where integer01 and packed_decimal01 where added), write a

new line of code “ADD 8 to result.” (Ignore the comment line in the image):

While this is a legitimate method for calculations, it must be added that this is very

rarely used, as the initial method is much simpler.

 ARITHMETIC

Conversion Rules
In this program, different data types have been used when declaring variables. It is

the responsibility of the programmer to ensure the data types used are compatible

with one another when used for calculations or moving data to and from objects.

One should not attempt calculations with variables and numbers which do not

match.

For example, a variable defined as an integer cannot be multiplied by a character,

as these two data types are incompatible. This would cause the system to generate

syntax and runtime errors when the program is executed. While SAP has built in

automatic data type conversions for many of the standard data types within ABAP,

there are scenarios where the inbuilt conversion rules are not appropriate. It is

important to become familiar with the inbuilt conversion rules and know when to

manipulate the data prior to using them in calculations. Here, some examples of

conversion rules will be given, so that they can be used throughout programs

created.

Conversion rules are pre-defined logic that determine how the contents of the

source field can be entered into a target field. If one attempts to insert an integer

field containing the value of 1 to a character string, the built-in conversion rules

will determine exactly how this should be done without any syntax or runtime

errors.

For example, create a DATA statement with the name “num1” of TYPE p (packed

decimal) with DECIMALS 2 and a VALUE of ‘3.33’. Then create another variable

with the name “result1” of type i (integer). Attempt the calculation “result1 =

num1”. The conversion rule here would round the number to the closest integer,

in this case 3.

 ARITHMETIC

As you work with different data types, these kinds of conversion rules will often be

applied automatically, and it is up to you, the programmer, to understand these

conversion rules

 ARITHMETIC

and the data types used within the program to ensure no runtime errors occur.

Division Variations
Now, a slight step back will be taken to discuss the division operator further. In

ABAP, there are three ways in which numbers can be divided:

The standard result with decimal

places The remainder result

The integer result.

The standard form of division.

Create 2 variables, “numa” and “numb”, with values of 5.45 and 1.48 respectively,

then create the variable “result2” (also with 2 decimal places). Then insert the

calculation “result2 = numa / numb.” followed by a WRITE statement for result2.

Execute the program.

The integer form of division.

Copy the initial calculation; change the initial variables to “numc” and “numd”

and the resulting variable to “result3”. For integer division, rather than using the

standard /, use the operator DIV. This will give the result of the calculation’s

integer value, without the decimal places.

 ARITHMETIC

The remainder form of division.

Follow the steps from the integer form, this time with “nume”, “numf” and

“result4”. For this type of division, the arithmetical operator should be MOD. This,

when executed, will show the remainder value.

 CHARACTER STRINGS

Declaring C and N Fields
This chapter will discuss character strings. When creating programs, fields defined

as char- acter strings are almost always used. In SAP, there are two elementary

data types used for character strings. These are data type C, and data type N.

Data type C.

Data type C variables are used for holding alphanumeric characters, with a

minimum of 1 character and a maximum of 65,535 characters. By default, these are

aligned to the left.

Begin this chapter by creating a new program. From the ABAP Editor’s initial

screen, cre- ate a new program, named “Z_Character_Strings”. Title this

“Character Strings Exam- ples”, set the Type to ‘Executable program’, the Status

to ‘Test program’, the Application to ‘Basis’, and Save.

Create a new DATA field, name this “mychar” and, without any spaces following

this, give a number for the length of the field in parentheses. Then, include a space

and define the TYPE as c

This is the long form of declaring a type c field. Because this field is a generic data

type, the system has default values which can be used so as to avoid typing out the

full length of the declaration. If you create a new field, named “mychar2” and wish

the field to be 1 character in size, the default field size is set to 1 character by

default, so the size in brack- ets following the name is unnecessary. Also, because

this character field is the default type used by the system, one can even avoid

defining this. In the case of mychar2, the variable can be defined with only the field

name. The code in the image below performs exactly the same as if it was typed

“data mychar2(1) type c”:

 CHARACTER STRINGS

In the previous chapter, the table “zemployees” included various fields of type c,

such as “zsurname”. If one uses the TABLES statement followed by zemployees,

then by double- clicking the table name to use forward navigation and view the

table, one can see that the “surname” field is of data type CHAR, with length 40.

This declaration can be replicated within the ABAP program:

Return to the program, and in place of mychar2, create a new field named

“zemploy- ees1”, with a length of 40 and type c. This will have exactly the same

effect as the previous declaration. Referring back to previous chapter, another way

of doing this would be to use the LIKE statement to declare zemployees (or this

time zemployees2) as having the same properties as the “surname” field in the

table:

Data type N.

The other common generic character string data type is N. These are by default

right- aligned. If one looks at the initial table again, using forward navigation, the

field named “employee”, which refers to employee numbers, is of the data type

NUMC, with a length of 8. NUMC, or the number data type, works similarly to the

character data type, except with the inbuilt rule to only allow the inclusion of

numeric characters. This data type, then, is ideal when the field is only to be used

for numbers with no intention of carrying out cal- culations.

To declare this field in ABAP, create a new DATA field named “znumber1”, TYPE

n. Again, alternatively this can be done by using the LIKE statement to refer back

to the original field in the table.

 CHARACTER STRINGS

String Manipulation
Like many other programming languages, ABAP provides the functionality to

interrogate and manipulate the data held in character strings. This section will look

at some of the popular statements which ABAP provides for carrying out these

functions:

Concatenating String Fields

Condensing Character Strings

Finding the Length of a String

Searching for Specific

Characters The SHIFT

statement

Splitting Character

Strings SubFields

Concatenate
The concatenate statement allows two character strings to be joined so as to form a

third string. First, type the statement CONCATENATE into the program, and

follow this by speci- fying the fields, here “f1”, “f2” and so on. Then select the

destination which the output string should go to, here “d1”. If one adds a

subsequent term, [separated by sep] (“sep” here is an example name for the

separator field), this will allow a specified value to be in- serted between each field

in the destination field:

Note: If the destination field is shorter than the overall length of the input fields, the char-

acter string will be truncated to the length of the destination field, so ensure when using the

CONCATENATE statement, the string data type is being used, as these can hold over

65,000 characters.

As an example, observe the code in the image below.

 CHARACTER STRINGS

The first 3 fields should be familiar by now. The fourth is the separator field, here

again called “sep” (the size of sep has not been defined here, and so it will take on

the default which the system uses - 1 character). The last field is titled “destination”,

200 characters long and of data type c.

Below this section is the CONCATENATE statement, followed by the fields to

combine to- gether into the destination field. The WRITE statement is then used to

display the result. Executing this code will output the following:

Note that the text has been aligned to the left, as it is using data type c. Also, the code

did not include the SEPARATED BY addition, and so the words have been

concatenated with- out spaces. This can be added, and spaces will appear in the

output:

	UNIT – II
	Dr.A.DEVI
	Associate Professor
	Department of Computer Applications
	DRSNSRCAS
	Creating a Program
	Code Editor
	Write Statements
	Output Individual Fields

	Chaining Statements Together
	Copy Your Program
	Declaring Variables
	Constants
	Arithmetic – Addition
	Arithmetic – Subtraction
	Arithmetic – Division
	Arithmetic – Multiplication
	Conversion Rules
	Division Variations
	The standard form of division.
	The integer form of division.
	The remainder form of division.

	Declaring C and N Fields
	Data type C.
	Data type N.

	String Manipulation
	Concatenate

